Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Nat Microbiol ; 9(2): 390-404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238469

ABSTRACT

Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.


Subject(s)
Proteomics , Yersinia , Yersinia/genetics , Yersinia/metabolism
2.
Appl Environ Microbiol ; 89(7): e0024023, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37338394

ABSTRACT

Metal ions are essential nutrients for all life forms, and restriction of metal ion availability is an effective host defense against bacterial infection. Meanwhile, bacterial pathogens have developed equally effective means to secure their metal ion supply. The enteric pathogen Yersinia pseudotuberculosis was found to uptake zinc using the T6SS4 effector YezP, which is essential for Zn2+ acquisition and bacterial survival under oxidative stress. However, the mechanism of this zinc uptake pathway has not been fully elucidated. Here, we identified the hemin uptake receptor HmuR for YezP, which can mediate import of Zn2+ into the periplasm by the YezP-Zn2+ complex and demonstrated that YezP functions extracellularly. This study also confirmed that the ZnuCB transporter is the inner membrane transporter for Zn2+ from the periplasm to cytoplasm. Overall, our results reveal the complete T6SS/YezP/HmuR/ZnuABC pathway, wherein multiple systems are coupled to support zinc uptake by Y. pseudotuberculosis under oxidative stress. IMPORTANCE Identifying the transporters involved in import of metal ions under normal physiological growth conditions in bacterial pathogens will clarify its pathogenic mechanism. Y. pseudotuberculosis YPIII, a common foodborne pathogen that infects animals and humans, uptake zinc via the T6SS4 effector YezP. However, the outer and inner transports involved in Zn2+ acquisition remain unknown. The important outcomes of this study are the identification of the hemin uptake receptor HmuR and inner membrane transporter ZnuCB that import Zn2+ into the cytoplasm via the YezP-Zn2+ complex, and elucidation of the complete Zn2+ acquisition pathway consisting of T6SS, HmuRSTUV, and ZnuABC, thereby providing a comprehensive view of T6SS-mediated ion transport and its functions.


Subject(s)
Hemin , Yersinia pseudotuberculosis Infections , Humans , Animals , Hemin/metabolism , Yersinia/metabolism , Biological Transport , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Zinc/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 508-517, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37204817

ABSTRACT

Gram-negative bacteria such as Aeromonas and Yersinia spp. have developed mechanisms to inhibit the immune defense of their host. Effector proteins are directly injected into the host cytoplasm from the bacterial cytosol via type III secretion systems (T3SSs), where they modulate the cytoskeleton and signaling of the cell. Assembly of, and secretion via, T3SSs is tightly regulated by a number of bacterial proteins, including SctX (AscX in Aeromonas), the secretion of which is essential for T3SS function. Here, crystal structures of AscX in complex with SctY chaperones from Yersinia or Photorhabdus spp. carrying homologous T3SSs are described. There are crystal pathologies in all cases, with one crystal form diffracting anisotropically and the other two exhibiting strong pseudotranslation. The new structures reveal that the positioning of the substrate is very similar on different chaperones. However, the two C-terminal SctX helices that cap the N-terminal tetratricopeptide repeat of SctY shift and tilt depending on the identity of the chaperone. Moreover, the C-terminus of the α3 helix of AscX exhibits an unprecedented kink in two of the structures. In previous structures, the C-terminus of SctX protrudes beyond the chaperone as a straight helix: a conformation that is required for binding to the nonameric export gate SctV but that is unfavorable for binary SctX-SctY complexes due to the hydrophobicity of helix α3 of SctX. A kink in helix α3 may allow the chaperone to shield the hydrophobic C-terminus of SctX in solution.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Protein Binding , Molecular Chaperones/chemistry , Bacterial Proteins/chemistry , Yersinia/metabolism , Hydrophobic and Hydrophilic Interactions
4.
J Biomol Struct Dyn ; 41(5): 1879-1894, 2023 03.
Article in English | MEDLINE | ID: mdl-35021965

ABSTRACT

Some members of Yersinia (Y), a genus of bacteria in the family Yersiniaceae, are pathogenic in humans, causing a range of health problems, from gastrointestinal syndromes to the plague. The Y protein tyrosine phosphatase (PTP) YopH is a crucial virulence determinant, considering the vital roles of PTPs in the intracellular signal transduction pathways and cell cycle control. The structural understanding of YopH as a cellular target in pathogenic conditions caused by Y infection is a prerequisite for designing potent and selective YopH inhibitors. Thus, by using molecular docking simulations, the open and closed conformations of the so-called 'WPD loop' (352-Gly-Asn-Trp-Pro-Asp-Gln-Thr-Ala-Val-Ser-361), located nearby the active site (403-Cys-Arg-Ala-Gly-Val-Gly-Arg-Thr-410) in YopH structure, are shown to be relevant for recognition by carboxylic acid derivatives, and the closed conformation is a more preferable receptor in terms of the quantitative correlation with experimental data. In both cases, aurintricarboxylic acid (ATA) has the greatest affinity to YopH. Consequently, a quantum mechanics/molecular mechanics (QM/MM) molecular model is derived to see into the extent of the ATA-induced open-closed conformational change. Active site residues and the WPD loop, as well as ATA are treated using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). The active/inactive functional behavior of YopH is explored by observing the interaction mode of ATA with the wild-type (wt)/Cys403Ser receptor and evaluating the competitive inhibition parameters. Implications of the present study for experimental research are discussed. Communicated by Ramaswamy H. Sarma.


Subject(s)
Bacterial Outer Membrane Proteins , Carboxylic Acids , Protein Tyrosine Phosphatases , Yersinia , Bacterial Outer Membrane Proteins/chemistry , Carboxylic Acids/chemistry , Catalytic Domain , Molecular Docking Simulation , Protein Tyrosine Phosphatases/chemistry , Yersinia/metabolism
5.
PLoS Genet ; 18(7): e1010321, 2022 07.
Article in English | MEDLINE | ID: mdl-35901167

ABSTRACT

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor. While deletion of iscR or ymoA has been shown to decrease and increase LcrF expression and type III secretion, respectively, the role of H-NS in this system has not been definitively established because hns is an essential gene in Yersinia. Using CRISPRi knockdown of hns, we show that hns depletion causes derepression of lcrF. Furthermore, we find that while YmoA is dispensable for H-NS binding to the lcrF promoter, YmoA binding to H-NS is important for H-NS repressive activity. We bioinformatically identified three H-NS binding regions within the lcrF promoter and demonstrate binding of H-NS to these sites in vivo using chromatin immunoprecipitation. Using promoter truncation and binding site mutation analysis, we show that two of these H-NS binding regions are important for H-NS/YmoA-mediated repression of the lcrF promoter. Surprisingly, we find that IscR is dispensable for lcrF transcription in the absence of H-NS/YmoA. Indeed, IscR-dependent regulation of LcrF and type III secretion in response to changes in oxygen, such as those Yersinia is predicted to experience during host infection, only occurs in the presence of an H-NS/YmoA complex. These data suggest that, in the presence of host tissue cues that drive sufficient IscR expression, IscR can act as a roadblock to H-NS/YmoA-dependent repression of RNA polymerase at the lcrF promoter to turn on T3SS expression.


Subject(s)
Gene Expression Regulation, Bacterial , Yersinia , Bacterial Proteins/metabolism , Histones/genetics , Oxygen/metabolism , Yersinia/genetics , Yersinia/metabolism
6.
Nat Commun ; 13(1): 2858, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654781

ABSTRACT

Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.


Subject(s)
Bacterial Proteins , Molecular Chaperones , Bacterial Proteins/metabolism , Binding Sites , Molecular Chaperones/metabolism , Type III Secretion Systems/metabolism , Yersinia/metabolism
7.
Molecules ; 27(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35566248

ABSTRACT

A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) was cloned from the genome of Yersinia sp. 298 and subjected to recombinant expression. The specific activity of the recombinase YsHyl8A was 11.19 U/mg, with an optimal reaction temperature of 40 °C and 50% of its specific activity remaining after thermal incubation at 30 °C for 1 h. In addition, its optimal reaction pH was 7.5, and while it was most stable at pH 6.0 in Na2HPO4-citric acid buffer, it remained highly stable at pH 6.0-11.0. Further, its enzymatic activity was increased five-fold with 0.1 M NaCl. YsHyl8A, as an endo-lyase, can degrade both HA and CS, producing disaccharide end-products. These properties suggested that YsHyl8A possessed both significant alkalophilic and cold-adapted features while being dependent on NaCl, likely resulting from its marine source. Yersinia is a typical fish pathogen, with glycosaminoglycan lyase (GAG lyase) as a potential pathogenic factor, exhibiting strong hyaluronidase and chondroitinase activity. Further research on the pathogenic mechanism of GAG lyase may benefit the prevention and treatment of related diseases.


Subject(s)
Glycosaminoglycans , Lyases , Animals , Chondroitin Sulfates , Hyaluronic Acid/chemistry , Hydrogen-Ion Concentration , Polysaccharide-Lyases/chemistry , Sodium Chloride , Yersinia/genetics , Yersinia/metabolism
8.
PLoS Pathog ; 18(5): e1010251, 2022 05.
Article in English | MEDLINE | ID: mdl-35604950

ABSTRACT

Yersinia enterocolitica employs a type three secretion system (T3SS) to translocate immunosuppressive effector proteins into host cells. To this end, the T3SS assembles a translocon/pore complex composed of the translocator proteins YopB and YopD in host cell membranes serving as an entry port for the effectors. The translocon is formed in a Yersinia-containing pre-phagosomal compartment that is connected to the extracellular space. As the phagosome matures, the translocon and the membrane damage it causes are recognized by the cell-autonomous immune system. We infected cells in the presence of fluorophore-labeled ALFA-tag-binding nanobodies with a Y. enterocolitica strain expressing YopD labeled with an ALFA-tag. Thereby we could record the integration of YopD into translocons and its intracellular fate in living host cells. YopD was integrated into translocons around 2 min after uptake of the bacteria into a phosphatidylinositol-4,5-bisphosphate enriched pre-phagosomal compartment and remained there for 27 min on average. Damaging of the phagosomal membrane as visualized with recruitment of GFP-tagged galectin-3 occurred in the mean around 14 min after translocon formation. Shortly after recruitment of galectin-3, guanylate-binding protein 1 (GBP-1) was recruited to phagosomes, which was accompanied by a decrease in the signal intensity of translocons, suggesting their degradation or disassembly. In sum, we were able for the first time to film the spatiotemporal dynamics of Yersinia T3SS translocon formation and degradation and its sensing by components of the cell-autonomous immune system.


Subject(s)
Yersinia pseudotuberculosis , Yersinia , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Galectin 3 , Type III Secretion Systems/metabolism , Yersinia/metabolism , Yersinia pseudotuberculosis/metabolism
9.
Biochim Biophys Acta Proteins Proteom ; 1870(5): 140782, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35470106

ABSTRACT

Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.


Subject(s)
Mycobacterium tuberculosis , Drug Design , Enzyme Inhibitors , Protein Tyrosine Phosphatases , Yersinia/metabolism
10.
mBio ; 13(1): e0239121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089085

ABSTRACT

Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.


Subject(s)
Bacterial Proteins , Copper , Genomic Islands , Siderophores , Uropathogenic Escherichia coli , Yersinia , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Enterobacteriaceae/genetics , Enterobactin , Ferric Compounds , Genomic Islands/genetics , Genomic Islands/immunology , Siderophores/genetics , Siderophores/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Yersinia/genetics , Yersinia/metabolism , Yersinia/pathogenicity
11.
PLoS One ; 17(1): e0263019, 2022.
Article in English | MEDLINE | ID: mdl-35077520

ABSTRACT

Bacterial protein secretion is crucial to the maintenance of viability and pathogenicity. Although many bacterial secretion systems have been identified, the underlying mechanisms regulating their expression are less well explored. Yersinia entomophaga MH96, an entomopathogenic bacterium, releases an abundance of proteins including the Yen-Tc into the growth medium when cultured in Luria Bertani broth at ≤ 25°C. Through the development of a high-throughput exoproteome screening assay (HESA), genes involved in MH96 exoprotein production were identified. Of 4,080 screened transposon mutants, 34 mutants exhibited a decreased exoprotein release, and one mutation located in the intergenic region of the Yen-Tc operon displayed an elevated exoprotein release relative to the wild-type strain MH96. DNA sequencing revealed several transposon insertions clustered in gene regions associated with lipopolysaccharide (LPSI and LPSII), and N-acyl-homoserine lactone synthesis (quorum sensing). Twelve transposon insertions were located within transcriptional regulators or intergenic regions. The HESA will have broad applicability for identifying genes associated with exoproteome production in a range of microorganisms.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Proteome , Yersinia , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Proteome/genetics , Proteome/metabolism , Yersinia/genetics , Yersinia/metabolism
12.
Cell Death Differ ; 29(2): 306-322, 2022 02.
Article in English | MEDLINE | ID: mdl-34999730

ABSTRACT

Phosphorylation of the pseudokinase mixed lineage kinase domain-like protein (MLKL) by the protein kinase RIPK3 targets MLKL to the cell membrane, where it triggers necroptotic cell death. We report that conjugation of K63-linked polyubiquitin chains to distinct lysine residues in the N-terminal HeLo domain of phosphorylated MLKL (facilitated by the ubiquitin ligase ITCH that binds MLKL via a WW domain) targets MLKL instead to endosomes. This results in the release of phosphorylated MLKL within extracellular vesicles. It also prompts enhanced endosomal trafficking of intracellular bacteria such as Listeria monocytogenes and Yersinia enterocolitica to the lysosomes, resulting in decreased bacterial yield. Thus, MLKL can be directed by specific covalent modifications to differing subcellular sites, whence it signals either for cell death or for non-deadly defense mechanisms.


Subject(s)
Listeria , Yersinia , Endosomes/metabolism , Listeria/metabolism , Lysosomes/metabolism , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitination , Yersinia/metabolism
13.
Toxins (Basel) ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34941738

ABSTRACT

The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.


Subject(s)
Bacterial Toxins/pharmacology , Exotoxins/pharmacology , rho GTP-Binding Proteins/metabolism , Escherichia coli/metabolism , Exotoxins/metabolism , Yersinia/metabolism
14.
Mol Cell ; 81(24): 5039-5051.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34784509

ABSTRACT

Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded ß-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophages/pathogenicity , Cell Membrane/virology , Escherichia coli/virology , Yersinia/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriophages/immunology , Cell Death , Cell Membrane/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli/metabolism , Host-Pathogen Interactions , Ligands , Protein Conformation , Protein Multimerization , Protein Transport , Signal Transduction , Structure-Activity Relationship , Yersinia/genetics
15.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 108-116, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33404530

ABSTRACT

Apical sodium-dependent bile acid transporter (ASBT) mediates the uptake of bile acids from the ileum lumen into enterocytes and presents a potential target for the treatment of several metabolic diseases, including type 2 diabetes. It has been proposed that the underlying mechanism for transport by ASBT is an elevator-style alternating-access model, which was deduced mainly by comparing high-resolution structures of two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii) in different conformations. However, one important issue is that the only outward-facing structure (PDB entry 4n7x) was obtained with an Na+-binding site mutant of ASBTYf, which severely cripples its transport function, and therefore the physiological relevance of the conformation in PDB entry 4n7x requires further careful evaluation. Here, another crystal structure is reported of ASBTYf that was captured in a state closely resembling the conformation in PDB entry 4n7x using an engineered disulfide bridge. The introduced cysteine mutations avoided any proposed Na+- or substrate-binding residues, and the resulting mutant retained both structural and functional integrity and behaved similarly to wild-type ASBTYf. These data support the hypothesis that the PDB entry 4n7x-like structure represents a functional outward-facing conformation of ASBTYf in its transport cycle.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Organic Anion Transporters, Sodium-Dependent/chemistry , Symporters/chemistry , Yersinia/metabolism , Bacterial Proteins/chemistry , Binding Sites , Biological Transport , Humans , Molecular Conformation
16.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 117-125, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33404531

ABSTRACT

Apical sodium-dependent bile acid transporter (ASBT) retrieves bile acids from the small intestine and plays a pivotal role in enterohepatic circulation. Currently, high-resolution structures are available for two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii), from which an elevator-style alternating-access mechanism has been proposed for substrate transport. A key concept in this model is that the substrate binds to the central cavity of the transporter so that the elevator-like motion can expose the bound substrate alternatingly to either side of the membrane during a transport cycle. However, no structure of an ASBT has been solved with a substrate bound in its central cavity, so how a substrate binds to ASBT remains to be defined. In this study, molecular docking, structure determination and functional analysis were combined to define and validate the details of substrate binding in ASBTYf. The findings provide coherent evidence to provide a clearer picture of how the substrate binds in the central cavity of ASBTYf that fits the alternating-access model.


Subject(s)
Bacterial Proteins/chemistry , Organic Anion Transporters, Sodium-Dependent/chemistry , Symporters/chemistry , Yersinia/metabolism , Binding Sites , Biological Transport , Molecular Conformation
17.
Biomolecules ; 10(12)2020 12 04.
Article in English | MEDLINE | ID: mdl-33291818

ABSTRACT

Yersinia pseudotuberculosis, Y. enterocolitica and Y. pestis are pathogenic bacteria capable of causing disease in humans by growing extracellularly in lymph nodes and during systemic infections. While the capacity of these bacteria to invade, replicate, and survive within host cells has been known for long, it is only in recent years that their intracellular stages have been explored in more detail. Current evidence suggests that pathogenic Yersinia are capable of activating autophagy in both phagocytic and epithelial cells, subverting autophagosome formation to create a niche supporting bacterial intracellular replication. In this review, we discuss recent results opening novel perspectives to the understanding of intimate host-pathogens interactions taking place during enteric yersiniosis and plague.


Subject(s)
Autophagy , Intracellular Membranes/metabolism , Yersinia/metabolism , Animals , Biological Transport , Host-Pathogen Interactions , Humans , Intracellular Membranes/microbiology , Yersinia/physiology
18.
Microbiol Immunol ; 64(11): 768-777, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32902897

ABSTRACT

The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to block the host innate immune response. One of the effectors, YopT, is a potent cysteine protease that causes the disruption of the actin cytoskeleton to inhibit phagocytosis of the pathogen; however, its molecular mechanism and relevance to pathogenesis need further investigation. In this report, we show that RIG-I is a novel target of the YopT protein. Remarkably, YopT interacts with RIG-I and inhibits rat liver homogenate-mediated nuclear factor-κB and interferon regulatory factor-3 activation. Further studies revealed a YopT-dependent increase in the K48-polymerized ubiquitination of RIG-I. These findings suggest that YopT negatively regulates RIG-I-mediated cellular antibacterial response by targeting RIG-I.


Subject(s)
Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Interferon Regulatory Factor-3/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Yersinia/metabolism , Animals , Bacterial Proteins/genetics , Cell Line , Cysteine Endopeptidases/genetics , HEK293 Cells , Humans , Mice , NF-kappa B/genetics , Phagocytosis , RAW 264.7 Cells , Transcription Factor RelA , Yersinia/genetics
19.
Annu Rev Microbiol ; 74: 221-245, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32660389

ABSTRACT

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.


Subject(s)
Cytosol/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate , Type III Secretion Systems/immunology , Yersinia/immunology , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Cytosol/microbiology , Humans , Inflammasomes , Pyroptosis , Signal Transduction , Virulence Factors/metabolism , Yersinia/metabolism , Yersinia/pathogenicity
20.
Article in English | MEDLINE | ID: mdl-31451512

ABSTRACT

The innate immune system senses and responds to pathogens and endogenous damage through supramolecular protein complexes known as inflammasomes. Cytosolic inflammasome sensor proteins trigger inflammasome assembly on detection of infection and danger. Assembled inflammasomes activate a cascade of inflammatory caspases, which process procytokines and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores that lead to cytokine release and/or programmed lytic cell death, called pyroptosis. In this review, we provide a primer on pyroptosis and focus on its executioner, the GSDM protein family. In addition to inflammasome-mediated GSDMD pore formation, we describe recently discovered GSDMD activation by caspase-8 and elastase in Yersinia-infected macrophages and aging neutrophils, respectively, and GSDME activation by apoptotic caspases. Finally, we discuss strategies that host cells and pathogens use to restrict GSDMD pore formation, in addition to therapeutics targeting the GSDM family.


Subject(s)
Apoptosis , Gene Expression Regulation , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/microbiology , Neutrophils/microbiology , Phosphate-Binding Proteins/metabolism , Pyroptosis , Yersinia/metabolism , Animals , Caspase 3/metabolism , Caspase 8/metabolism , Caspases/metabolism , Cell Membrane/metabolism , Cytokines/metabolism , Humans , Inflammasomes , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...